Effect of Localized Mechanical Indentation on Skin Water Content Evaluated Using OCT

نویسندگان

  • Abhijit A. Gurjarpadhye
  • William C. Vogt
  • Yajing Liu
  • Christopher G. Rylander
چکیده

The highly disordered refractive index distribution in skin causes multiple scattering of incident light and limits optical imaging and therapeutic depth. We hypothesize that localized mechanical compression reduces scattering by expulsing unbound water from the dermal collagen matrix, increasing protein concentration and decreasing the number of index mismatch interfaces between tissue constituents. A swept-source optical coherence tomography (OCT) system was used to assess changes in thickness and group refractive index in ex vivo porcine skin, as well as changes in signal intensity profile when imaging in vivo human skin. Compression of ex vivo porcine skin resulted in an effective strain of -58.5%, an increase in refractive index from 1.39 to 1.50, and a decrease in water volume fraction from 0.66 to 0.20. In vivo OCT signal intensity increased by 1.5 dB at a depth of 1 mm, possibly due to transport of water away from the compressed regions. These finding suggest that local compression could be used to enhance light-based diagnostic and therapeutic techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of tissue optical properties during mechanical compression using swept source optical coherence tomography

Laser-based photo-thermal therapies can provide minimally-invasive treatment of cancers. Their effectiveness is limited by light penetration depth in tissue due to its highly scattering properties. The highly disordered refractive index distribution in tissue leads to multiple-scattering of incident light. It has been hypothesized that mechanical compression has a great potential to enhance the...

متن کامل

Biomechanics of articular cartilage and determination of material properties.

Descriptions of the mechanical behaviors of articular cartilage and their correlations with collagen, proteoglycan, water, and ions are summarized, with particular emphasis on understanding the osmotic effect inside the tissue. First, a descriptive explanation is presented of the biphasic theory required to understand how interstitial water contributes toward the viscoelastic behavior of any hy...

متن کامل

Numerical Study of the Effect of Materials’ Plastic Behavior on Equibiaxial Residual Stress Measurement Using Indentation

Indentation is a new method for estimating residual stress. The plastic behavior of the materials under study can affect indentation parameters and, thus, influences the results of residual stress measurement. In this paper, the effect of yield stress and work-hardening exponent on the accuracy of residual stress measurements in steels and aluminums was studied. Results showed that, for m...

متن کامل

Quantitative Imaging of Young's Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study

Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young's modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson's ratio using Hayes' equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medi...

متن کامل

Atomic Simulation of Temperature Effect on the Mechanical Properties of Thin Films

The molecular dynamic technique was used to simulate the nano-indentation test on the thin films of silver, titanium, aluminum and copper which were coated on the silicone substrate. The mechanical properties of the selected thin films were studied in terms of the temperature. The temperature was changed from 193 K to 793 K with an increment of 100 K. To investigate the effect of temperature on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011